Rabu, 04 Januari 2012

BIO OPTIK DALAM KEPERAWATAN


BIO OPTIK DALAM KEPERAWATAN
By : Abdul Rohman Sayyid

A. PENDAHULUAN
Sampai abad ke-4 sebelum masehi orang masih berrpendapat bahwa benda-benda di sekitar dapat dilihat oleh karena mata mengeluarkan sinar-sinar penglihatan. Anggapan ini didukung oleh Plato (429 – 348 ) dan Euclides (287 – 212 SM) oleh karena pada mata binatang di malam hari tampak bersinar.
Pendapat di atas di tentang oleh Aristoteles (384 – 322 SM) karena pada kenyataan kita tidak dapat melihat benda-benda di dalam ruang gelap. Namun demikian Aristoteles tidak dapat memberi penjelasan mengapa mata dapat melihat benda.
Pada abad pertengahan Alhazan (965 – 1038) seorang Mesir di Iskandria berpendapat bahwa benda di sekitar itu dapat dilihat oleh karena benda-benda tersebut memantulkan cahaya atau memancarkan cahaya yang masuk ke dalam mata . teori ini akhirnya di terima sampai abad ke 20 ini.

B. OPTIK GEOMETRI DAN OPTIK FISIKA

1. OPTIK GEOMETRI
Berpangkal pada perjalanan cahaya dalam medium secara garis lurus, berkas-berkas cahaya di sebut garis cahaya dan gambar secara garis lurus. Dengan cara pendekatan ini dapatlah melukiskan ciri-ciri cermin dan lensa dalam bentuk matematika. Misalnya untuk rumus cermin dan lensa :

f = focus = titik api
b = jarak benda
v = jarak bayangan

Hukum Willebrord Snelius (1581 -1626) :

n = indeks bias
i = sudut datang
r = sudut bias (refraksi)

2. OPTIK FISIK
Gejala cahaya seperti dispersi, interferensi dan polasisasi tidak dapat di jelaskan malui metode optika geometri. Gejala-gejala ini hanya dapat dijelaskan dengan menghitung ciri-ciri fisik dari cahaya tersebut.
Sir Isaac Newton (1642-1727), cahaya itu menggambarkan peristiwa cahaya sebagai sebuah aliran dari butir-butir kecil (teori korpuskuler). Sedangkan dengan menggunakan teori kwantum yang dipelopori Plank (1858-1947), cahaya itu terdiri atas kwanta atau foton-foton, tampaknya agak mirip dengan teori Newton yang lama itu. Dengan menggunakan teori Max Plank dapat menjelaskan mengapa benda itu panas apabila terkena sinar.
Thomas Young (1773-1829) dan August Fresnel (1788-1827), dapat menjelaskan bahwa cahaya dapat melentur berinterferensi. James Clark Mexwell (1831-1879) berkebangsaan Skotlandia, dari hasil percobaannya dapat menjelaskan bahwa cepat rambat cahaya (3 X 10 m/detik) sehingga berkesimpulan bahwa cahaya adalah gelombang elektromagnetik.
Huygens ( 1690) menganggap cahaya itu sebagai gejala gelombang dari sebuah sumber cahaya menjalarkan getaran-getaran ke semua jurusan. Setiap titik dari ruangan yang bergetar olehnya dapat dianggap sebagai sebuah pusat gelombang baru. Inilah prinsip dari Huygens yang belum bisa menjelaskan perjalanan cahaya dari satu medium ke medium lainnya.
Dari hasil percobaan Einstein (1879-1955) dimana logam di sinari dengan cahaya akan memancarkan electron (gejala foto listrik). Hal ini dapat disimpulkan bahwa cahaya memiliki sifat fartikel dan gelombang magnetic.
Dari uraian di atas dapat disimpulkan bahwa cahaya mempunyai sifat materi (partikel) dan sifat gelombang.

C. HUBUNGAN ANTARA ENDEKS BIAS DAN KECEPATAN RAMBAT
Indeks bias dari suatu benda didefinisikan sebagai :
n
i = sudut datang
r = sudut bias
ini dapat pula didefinisikan sebagai berikut : kecepatan rambat cahaya dalam ruang hampa dibandingkan dengan kecepatan rambat cahaya dalam medium. Dengan demikian bila cepat rambat cahaya di dalam ruang hampa C dan di dalam medium C maka :

D. LENSA
Berdasarkan bentuk permukaan lensa maka lensa dapat dibagi menjadi dua :
 Lensa yang mempunyai permukaan sferis
v
 Lensa yang mempunyai permukaan silindris.
v
Permukaan sferis ada dua macam pula yaitu :
 Lensa konvergen / konveks
v
Yaitu sinar sejajar yang menembus lensa akan berkumpul menjadi bayangan nyata, juga di sebut lensa positif atau lensa cembung.
 Lensa divergen / konkaf
v
Yaitu sinar yang sejajar yang menembus lensa akan menyebar , lensa ini disebut lensa negatif atau lensa cekung.
Lensa yang mempunyai permukaan silindris disebut lensa silindris. Lensa ini mempunyai focus yang positif dan ada pula mempunyai focus negatif.

KESESATAN LENSA
Berdasarkan persamaan yang berkaitan dengan jarak benda, jarak bayangan , jarak focus, radius kelengkungan lensa seerta sinar-sinar yang dating paraksial akan kemungkinan adanya kesesatan lensa (aberasi lensa). Aberasi ini ada bermacam-macam :
a. Aberasi sferis ( disebabkan oleh kecembungan lensa).
Sinar-sinar paraksial / sinar-sinar dari pinggir lensa membentuk bayangan di P’. aberasi ini dapat dihilangkan dengan mempergunakan diafragma yang diletakkan di depan lensa atau dengan lensa gabungan aplanatis yang terdiri dari dua lensa yang jenis kacanya berlainan.
b. Koma
Aberasi ini terjadi akibat tidak sanggupnya lensa membentuk bayangan dari sinar di tengah-tengah dan sinar tepi. Berbeda dengan aberasi sferis pada aberasi koma sebuah titik benda akan terbentuk bayangan seperti bintang berekor, gejala koma ini tidak dapat diperbaiki dengan diafragma.
c. Astigmatisma
Merupakan suatu sesatan lensa yang disebabkan oleh titik benda membentuk sudut besar dengan sumbu sehingga bayangan yang terbentuk ada dua yaitu primer dan sekunder. Apabila sudut antara sumbu dengan titik benda relatif kecil maka kemungkinan besar akan berbentuk koma.
d. Kelengkungan medan
Bayangan yang dibentuk oleh lensa pada layer letaknya tidak dalam satu bidang datar melainkan pada bidang lengkung. Peristiwa ini disebut lengkungan medan atau lengkungan bidang bayangan.
e. Distorsi
Distorsi atau gejala terbentuknya bayangan palsu. Terjadinya bayangan palsu ini oleh karena di depan atau di belakang lensa diletakkan diafragma atau cela. Benda berbentuk kisi akan tampak bayangan berbentuk tong atau berbentuk bantal. Gejala distorsi ini dapat dihilangkan dengan memasang sebuah cela di antara dua buah lensa.
f. Aberasi kromatis
Prinsip dasar terjadinya aberasi kromatis oleh karena focus lensa berbeda-beda untuk tiap-tiap warna. Akibatnya bayangan yang terbentuk akan tampak berbagai jarak dari lensa.
Ada dua macam aberasi kromatis yaitu :
 Aberasi kromatis aksial/longitudinal : perubahan jarak bayangan sesuai dengan indeks bias.
v
 Aberasi kromatis lateral : perubahan aberasi dalam ukuran bayangan.
v
Untuk menghilangkan terjadinya aberasi kromatis dipakai lensa flinta dan kaca krown; lensa kembar ini disebut “ Achromatic double lens”.

E. MATA
Banyak pengetahuan yang kita peroleh melalui suatu penglihatan. Untuk membedakan gelap atau terang tergantung atas penglihatan seseorang.
Ada tiga komponen pada penginderaan penglihatan :
 Mata memfokuskan bayangan pada retina
v
 System syaraf mata yang memberi informasi ke otak
v
 Korteks penglihatan salah satu bagian yang menganalisa penglihatan tersebut.
v

1. ALAT OPTIK MATA
Bagian-bagian pada mata terdiri dari :
 Retina
v
Terdapat ros batang dank ones/kerucut, fungsi rod untuk melihat pada malam hari sedangkan kone untuk melihat siang hari. Dari retina ini akan dilanjutkan ke saraf optikus.
 Fovea sentralis
v
Daerah cekung yang berukuran 0,25 mm di tengah-tengahnya terdapat macula lutea (bintik kuning).
 Kornea dan lensa
v
Kornea merupakan lapisan mata paling depan dan berfungsi memfokuskan benda dengan cara refraksi, tebalnya 0,5 mm sedangkan lensa terdiri dari kristal mempunyai dua permukaan dengan jari-jari kelengkungan 7,8 m fungsinya adalah memfokuskan objek pada berbagai jarak.
 Pupil
v
Di tengah-tengah iris terdapat pupil yang fungsinya mengatur cahaya yang masuk. Apabila cahaya terang pupil menguncup demikian sebaliknya.

Sistem optic mata serupa dengan kamera TV bahkan lebih mahal oleh karena :
a. Mata bisa mengamati objek dengan sudut yang sangat besar
b. Tiap mata mempunyai kelopak mata dan ada cairan lubrikasi
c. Dalam satu detik dapat memfokuskan objek berjarak 20 cm
d. Mata sangat efektif pada intensitas cahaya 10 : 1
e. Diafragma mata di atur secara otomatis oleh iris
f. Kornea terdiri dari sel-sel hidup namun tidak mendapat vaskularisasi
g. Tekanan bola mata diatur secara otomatis sehingga mencapai 20 mmHg
h. Tiap mata dilindungi oleh tulang
i. Bayangan yang terbentuk oleh mata akan diteruskan ke otak
j. Bola mata dilengkapi dengan otot-otot mata yang mengatur gerakan bola mata (m=muskulus = otot).
 M. rektus medialis = menarik bola mata ke dalam
Ø
 M. rektus lateralis = menarik bola mata ke samping
Ø
 M. rektus superior = menarik bola mata ke atas
Ø
 M. rektus inferior = menarik bola mata ke bawah
Ø
 M. obligus inferior = memutar ke samping atas
Ø
 M. obligus superior = memutar ke samping dalam.
Ø
Kelumpuhan salah satu otot mata akan timbul gejala yang disebut strabismus (mata juling). Ada tiga macam strabismus yaitu strabismus horizontal, vertical dan torsional.

2. DAYA AKOMODASI
Dalam hal memfokuskan objek pada retina, lensa mata memegang peranan penting. Kornea mempunyai fungsi memfokuskan objek secara tetap demikian pula bola mata (diameter bola mata 20 – 23 mm). kemampuan lensa mata untuk memfokuskan objek di sebut daya akomodasi. Selama mata melihat jauh, tidak terjadi akomodasi. Makin dekat benda yang dilihat semakin kuat mata / lensa berakomodasi. Daya akomodasi ini tergantung kepada umur. Usia makin tua daya akomodasi semakin menurun. Hal ini disebabkan kekenyalan lensa/elastisitas lensa semakin berkurang.

Jarak terdekat dari benda agar masih dapat dilihat dengan jelas dikatakan benda terletak pada “titik dekat” punktum proksimum. Jarak punktum proksimum terhadap mata dinyatakan P (dalam meter) maka disebut Ap (akisal proksimum); pada saat ini mata berakomodasi sekuat-kuatnya (mata berakomodasi maksimum). Jarak terjauh bagi benda agar masih dapat dilihat dengan jelas dikatakan benda terletak pada titik jauh/punktum remotum. Jarak punktum remotum terhadap mata dinyatakan r (dalam meter) maka disebut Ar (Aksial Proksimum); pada saat ini mata tidak berakomodasi/lepas akomodasi.
Selisih A dengan Ar disebut lebar akomodasi, dapat dinyatakan :
A = lebar akomodasi yaitu perbedaan antara akomodasi maksimal dengan lepas akomodasi maksimal.
Secara empiris A = 0,0028 (80 th – L) dioptri
L = umur dalam tahun
Bertambah jauhnya titik dekat akibat umur disebut mata presbiop. Presbyop ini bukan merupakan cacat penglihatan. Ada satu dari sekian jumlah orang tidak mempunyai lensa mata . Mata demikian disebut mata afasia.

3. PENYIMPANGAN PENGLIHATAN
Mata yang mempunyai titik jauh/punktum remotum terhingga akan memberi bayangan benda secara tajam pada selaput retina. Dikatakan mata emetropia. Sedangkan mata yang mempunyai titik jauh yang bukan tak terhingga , mata demikian disebut mata ametropia.
Mata emetropia mempunyai punktum proksimum sekitar 25 cm, disebut mata normal. Sedangkan mata emetropia yang mempunyai punktum proksimum lebih dari 25 cm di sebut mata presbiopia.
Mata ametropia mempunyai dua bentuk :
 Myopia (penglihatan dekat)
v
 Hipermetropia(penglihatan jauh)
v

MIOPIA
Mata ametropia yang mempunyai P dan r terlalu kecil di sebut mata myopia. Mata myopia ini bentuk mata terlalu lonjong maka benda berjauhan tak terhingga akan tergambar tajam di depan retina. Mata seperti ini dapat melihat tajam benda pada titik dekat tanpa akomodasi. Dengan akomodasi kuat akan terlihat benda yang lebih dekat lagi.

HIPERMETROPIA
Mata ametropia yang mempunyai P dan r terlalu besar dikatakan hipermetropia. Kalau diperhatikan bola mata hipermetropia maka akan terlihat bola mata yang agak gepeng dari normal. Mata yang demikian itu tanpa akomodasi bayangan tak terhingga akan terletak di belakang retina, tetapi kadang kala dengan akomodasi akan terlihat benda-benda yang jauh tak terhingga secara tajam bahkan dapat melihat benda-benda berada dekat di depan mata.
Baik myopia maupun hipermetropia kelainannya terletak pada poros yang di sebut ametropia poros.
Selain myopia dan hipermetropia, ada salah satu kelainan pada lensa mata yaitu astigmatisma. Astigmatisma terjadi apabila salah satu komponen system lensa menjadi bentuk telur daripada sferis. Tambahan pula kornea atau lensa kristaline menjadi memanjang ke salah satu arah. Dengan demikian radius kurvatura menjadi lebih besar pada arah memanjang. Sebagai konsekwensi berkas cahaya yang masuk lewat kurvatura yang panjang akan difokuskan dibelakang retina sedangkan berkas cahaya yang masuk lewat kurvatura yang pendek difokuskan di depan retina. Dengan perkataan lain mata tersebut mempunyai pandangan jauh terhadap beberapa berkas cahaya dan berpandangan dekat terhadap sisa cahaya. Dengan demikian mata seseorang yang menderita astigmatisma tidak dapat memfokuskan setiap objek dengan jelas.

4. TEHNIK KOREKSI
Setelah melalui pemeriksaan dokter mata dengan seksama maka ditentukan apakah penderita menderita presbiopia, hipermetropia, myopia, astigmatisma atau campuran (presbiopia dan myopia).
a. Mata presbiopia
Pada mata presbiopia tidak ada masalah untuk melihat jauh. Yang menjadi masalah adalah melihat dekat, untuk itu penderita dianjurkan memakai kacamata positif.
b. Mata hipermetropia
Mata demikian kemampuan melihat jauh dan dekat terganggu dimana punktum proksimum dan punktum remotum yang terlalu jauh sehingga dianjurkan memakai kacamata positif.
c. Mata myopia
Pada mata myopia , kemampuan melihat dekat dan jauh tergganggu oleh karena letak punktum proksimum dan punktum remotum yang terlalu dekat sehingga dianjurkan memakai kacamata negatif.
d. Mata astigmatisma
Penderita yang mengalami mata astigmatisma akan terganggu penglihatannya tidak dalam segala arah, sehingga penderita ini dianjurkan memakai kacamata silindris atau kaca mata toroidal. Penderita astigmatisma dengan satu mata akan melihat garis dalam satu arah lebih jelas daripada kea rah yang berlawanan.
e. Campuan
 Ada penderita yang matanya sekaligus
v mangalami presbipoi dan myopia, maka mempunyai punktum proksimum yang letaknya terlalu jauh dan punktum remotum terlalu kecil, penderita demikian memakai kacamata rangkap yaitu kacamata bifocal (negatif diatas, positif di bawah)
 Ada penderita yang hanya menderita
v presbiopia, myopia atau hipermetropia tanpa astigmatisma hanya memakai kacamata berlensa sferis.

Contoh 1:
Dokter dalam memeriksa penderita yang titik dekat matanya 0,5 meter dan penderita ingin membaca pada jarak 0,25 meter.
Pertanyaan :
a. Berapakah daya akomodasinya ?
b. Berapakah kekuatan lensa agar pemderita dapat membaca pada jarak 0,25 m ?

Untuk menjawab pertanyaan ini perlu diketahui bahwa objek yang terjadi pada retina dibentuk oleh kornea dan lensa mata yang merupakan lensa gabung dan jarak kornea retina secara pendekatan adalah 2 cm = 0,02 meter. Daya akomodasi mata dihitung dalam dioptri (D) dimana selisih antara kekuatan lensa mata untuk melihat pada titik/jarak tertentu dengan daya kekuatan lensa mata pada waktu melihat benda pada jarak jauh tak terduga. Maka penyelesaian soal di atas sebagai berikut :
a. Kekuatan focus mata normal :

Kalau mata orang tersebut difokuskan pada jarak 0,5 meter maka focus matanya

Daya akomodasi sebesar


b. Untuk melihat benda pada jarak 0,25 meter maka kekuatan matanya :


Penderita tersebut harus memakai kacamata dengan kekuatan :
54 D – 52 D = 2 D


Contoh 2 :
Penderita dengan titik dekat 2,0 meter. Berapa dioptrikah apabila penderita membaca pada jarak 0, 25 meter ?
Focus mata yang normal pada jarak 0,25 meter :

Focus mata pada jarak 2 meter :

Mata penderita ini perlu dikoreksi dengan lensa :
54 D – 50,5 D = 3,5 D
Pada penulisan resep bagi penderita yang memerlukan lensa kacamata dapat di lihat sebagai berikut :
Sferis Silinder Aksis Penambahan
OD - 1,25 - 1,25 180 + 1,25
OS - 1,75 - 1,75 103 + 1,25
Penambahan 1,25 kacamata bertujuan untuk koreksi kacamata silinder tersebut.

5. KETAJAMAN PENGLIHATAN
Ketajaman penglihatan dipergunakan untuk menentukan penggunaan kacamata , di klinik dikenal dengan nama visus. Tapi bagi seorang ajli fisika ketajaman penglihatan ini disebut resolusi mata.
Visus penderita bukan saja memberi pengertian tentang optiknya (kacamata) tetapi mempunyai arti yang lebih luas yaitu memberi keterangan tentang baik buruknya fungsi mata keseluruhannya. Oleh karena itu definisi visus adalah : nilai kebalikan sudut (dalam menit) terkecil dimana sebuah benda masih kelihatan dan dapat dibedakan.
Pada penentuan visus, para ahli mempergunakan kartu Snellen, dengan berbagai ukuran huruf dan jarak yang sudah ditentukan. Misalnya mata normal pada waktu diperiksa diperoleh 20/40 berarti penderita dapat membaca hurup pada 20 ft sedangkan bagi mata normal dapat membaca pada jarak 40 ft (20 ft = 4 meter).


Dengan demikian dapat di tulis dengan rumus :

Keterangan :
d = Jarak yang di lihat oleh penderita
D = Jarak yang dapat di lihat oleh mata normal.
Penggunaan kartu snellen ini, kualitasnya kadang-kadang meragukan oleh karena huruf yang sama besarnya mempunyai derajat kesukaran yang berbeda, demikian pula huruf dengan ukuran berbeda kadang-kadang tidak sama bentuknya. Untuk menghindari kelemahan-kelemahan itu telah diciptakan “kartu cincin Landolt”.
Kartu ini mempunyai sejumlah cincin berlubang, diatur berderet yang sama besar, dengan lubang yang arahnya ke atas, ke bawah, ke kiri dank e kanan.
Dari atas ke bawah cincin itu di atur agar lubangnya mengecil secara berangsur-angsur. Penderita di suruh menunjukkan deretan cincin tersebut hingga cincin terkecil tanpa salah. Angka visus ini didapat dengan menghitung sudut dimana cincin Landolt itu diamati. Misalnya penderita menunjukkan cincin landolt tanpa salah pada 0,8 mm jarak 4 meter.
Pemeriksaan visus seseorang selain disebut di atas dapat pula dengan cara menghitung jari, gerakan tangan dan sebagainya.
Berarti penderita dapat menghitung jari tangan pada jarak 1 meter.
Hanya dapat melihat gerakan tangan pada jarak 1 meter
= Hanya bisa membedakan gelap terang
Kalau seseorang penderita terjadi penurunan visus tanpa kelainan organis disebut “Amblyopia”.

6. MEDAN PENGLIHATAN
Untuk mengetahui besar kecilnya medan penglihatan seseorang dipergunakan “alat perimeter”.
Dengan alat ini diperoleh medan penglihatan vertical ± 130°; sedangkan medan penglihatan horizontal ± 155°.

7. TANGGAP CAHAYA
Bagian mata yang tanggap cahaya adalah retina. Ada dua tipe fotoreseptor pada retina yaitu Rod (batang) dan Cone(kerucut).
Rod dan Kone tidak terletak pada permukaan retina melainkan beberapa lapis di belakang jaringan syaraf.
Distribusi Rod dan Kone pada retina
a. Kone (kerucut)
Tiap mata mempunyai ± 6,5 juta cone yang berfungsi untuk melihat siang hari disebut “fotopik”.
Melalui kone kita dapat mengenal berbagai warna, tetapi kone tidak sensitive terhadap semua warna, ia hanya sensitive terhadap warna kuning, hijau (panjang gelombang 550 nm). Kone terdapat terutama pada fovea sentralis.
b. Rod (batang).
Dipergunakan pada waktu malam atau disebut penglihatan Skotopik. Dan merupakan ketajaman penglihatan dan dipergunakan untuk melihat ke samping. Setiap mata ada 120 juta batang. Distribusi pada retina tidak merata, pada sudut 20° terdapat kepadatan yang maksimal. Batang ini sangat peka terhadap cahaya biru, hijau (510 nm).
Tetapi Rod dan Kone sama-sama peka terhadap cahaya merah (650 – 700 nm), tetapi penglihatan kone lebih baik terhadap cahaya merah jika dibandingkan dengan Rod.

8. PENYESUAIAN TERHADAP TERANG DAN GELAP
Dari ruangan gelap masuk ke dalam ruangan terang kurang mengalami kesulitan dalam penglihatan. Tetapi apabila dari ruangan terang masuk ke dalam ruangan gelap akan tampak kesulitan dalam penglihatan dan diperlukan waktu tertentu agar memperoleh penyesuaian. Pendapat ini telah lama diketahui orang.
Apabila kepekaan retina cukup besar, seluruh objek/benda akan merangsang rod secara maksimum sehingga setiap benda bahkan yang gelap pun akan terlihat terang putih. Tetapi apabila kepekaan retina sangat lemah, ketika masuk ke dalam ruangan gelap tidak ada bayangan yang benderang yang merangsang rod dengan akibat tidak ada suatu objekpun yang terlihat. Perubahan sensitifitas retina secara automatis ini dikenal sebagai fenomena penyesuaian terang dan gelap.

a. Mekanisme penyesuaian terang (cahaya)
Pada kerucut dan batang terjadi perubahan di bawah pengaruh energi sinar yang disebut foto kimia. Di bawah pengaruh foto kimia ini rhodopsin akan pecah, masuk ke dalam retine dan skotopsine. Retine akan tereduksi menjadi vitamin A di bawah pengaruh enzyme alcohol dehydrogenase dan koenzym DPN – H + H (=DNA) dan terjadi proses timbal balik (visa versa)
Rushton (1955) telah membuktikan adanya rhodopsin dalam retina mata manusia, ternyata konsentrasi rhodopsin sesuai dengan distribusi rod.
Penyinaran dengan energi cahaya yang besar dan dilakukan secara terus menerus konsentrasi rhodopsin di dalam rod akan sangat menurun sehingga kepekaan retina terhadap cahaya akan menurun.

b. Mekanisme penyesuaian gelap
Seseorang masuk ke dalam ruangan gelap yang tadinya beradadi ruangan terang, jumlah rhodopsin di dalam rod sangat sedikit sebagai akibat orang tersebut tidak dapat melihat apa-apa di dalam ruangan gelap. Selama berada di ruangan gelap, pembentukan rhodopsin di dalam rod sangatlah perlahan-lahan, konsentrasi rhodopsin akan mencapai kadar yang cukup dalam beberapa menit berikutnya sehingga akhirnya rod akan terangsang oleh cahaya dalam waktu singkat.
Selama penyesuaian gelap kepekaan retina akan meningkat mencapai nilai 1.000 hanya dalam waktu beberapa menit saja, kepekaan retina mencapai nilai 100.000 waktu yang diperlukan 1 jam.
Sedangkan kepekaan retina akan menurun dari nilai 100.000 apabila seseorang dari ruangan gelap ke ruangan terang. Proses penurunanan kepekaan retina hanya diperlukan waktu 1 sampai 10 menit.
Penyesuaian gelap ini ternyata kone lebih cepat daripada rod. Dalam waktu kira-kira 5 menit fovea sentralis telah mencapai tingkat kepekaan. Kemudian dilanjutkan penyesuaian gelap oleh rod sekitar 30 – 60 menit, rata-rata terjadi pada 15 menit pertama. Sebelum masuk ke kamar gelap (misalnya ruang Rontgen) biasanya dianjurkan memakai kacamata merah atau salah satu mata dipejamkan dalam beberapa saat (± 15 menit).

9. TANGGAP WARNA
Salah satu kemampuan mata adalah tanggap warna, namun mekanisme tanggap warna tersebut belum diketahui secara jelas. Denganvmenggunakan pengamatan skotopik pada intensitas cahaya yang lemah, tidak ada respon terhadap warna. Tetapi dengan menggunakan pengamatan fotopik dapat melihata warna namun tidak bisa membedakan warna pada objek yang letaknya jauh dari pusat medan penglihatan.

a. Teori tanggap warna
Kone berbeda dengan rod dalam beberapa hal yaitu kone memberi jawaban yang selektif terhadap warna, kurang sensitive terhadap cahaya dan mempunyai hubungan dengan otak dalam kaitan ketajaman penglihatan dibandingkan dengan rod. Ahli faal Lamonov, Young Helmholpz berpendapat ada 3 tipe kone yang tanggap terhadap tiga warna poko yaitu biru, hijau dan merah.
 Kone biru
v
Mempunyai kemampuan tanggap gelombang frekwensi cahaya antara 400 dan 500 milimikron. Berarti konne biru dapat menerima cahaya , ungu, biru dan hijau.
 Kone hijau
v
Berkemampuan menerima gelombang cahaya dengan frekwensi antara 450 dan 675 milimikron. Ini berarti kone hijau dapat mendeteksi warna biru, hijau, kuning, orange dan merah.
 Kone merah
v
Dapat mendeteksi seluruh panjang gelombang cahaya tetapi respon terhadap cahaya orange kemerahan sangat kuat daripada warna-warna lainnya.
Ketiga warna pokok disebut trikhromatik. Teori yang diajukan oleh Lamonov, Young Helmholpz mengenai trikhromatik sukar untuk dimengerti bagaimana kone dapat mendeteksi warna menengah (warna intermediate) dari tiga warna pokok. Oleh sebab itu timbul teori tiga tipe dikromat yaitu suatu warna menengah terpraoduksi oleh karena dua tipe kone yang terangsang. Sebagai contoh, kone hijau dan merah terangsang bersamaan tetapi kone hijau terangsang lebih kuat daripada kone merah maka warna yang terproduksi adalah kuning kehijauan. Apabila kone hijau dank one biru terangsang, warna yang ditampilkan sebagai warna biru hijau. Jika intensitas rangsangan terhadap kone hijau lebih besar daripada kone biru, warna yang ditampilkan lebih hijau dan biru.
Pada suatu percobaan dimana mata disinari dengan spectrum cahaya kemudian dibuat kurva respon dari pigmen peka cahaya akan tampak tiga warna pigmen peka cahaya yang serupa dengan kurva sensitive untuk ketiga tipe kone.

b. Buta warna
Jika seseorang tidak mempunyai kone merah ia masih dapat melihat warna hijau, kuning, orange dan warna merah dengan menggunakan kone hijau tetapi tidak dapat membedakan secra tepat antara masing-masing warna tersebut oleh karena tidak mempunyai kone merah untuk kontras / membandingkan dengan kone hijau. Demikian pula jika seseorang kekurangan kone hijau, ia masih dapat melihata seluruh warna tetapi tidak dapat membedakan antara warna hijau, kuning, orange dan merah. Hal ini disebabkan kone hijau yang sedikit itdak mampu mengkontraskan dengan kone merah. Jadi tidak adanya kone merah atau hijau akan timbul kesukaran atau ketidakmampuan untuk membedakan warna antara keadaan ini di sebut buta warna merah hijau kasus yang jarang sekali, tetapi bisa terjadi seseorang kekurangan kone biru, maka orang tersebut sukar membedakan warna ungu, biru dan hijau. Tipe buta warna ini disebut kelemahan biru ( blue weakness). Pada suatu penelitian diperoleh 8% laki-laki buta warna, sedangkan 0,5 % terdapat pada wanita dan dikatakan buta warna ini diturunkan oleh wanita. Adapula orang buta terhadap warna merah disebut protanopia, buta terhadap warna hijau disebut deuteranopia dan buta terhadap warna biru disebut tritanopia.

10. PERALATAN DALAM PEMERIKSAAN MATA
Dari sekian banyak peralatan mata, hanya beberapa peralatan yang akan dibahas dalam kaitan pemeriksaan mata. Ada tiga prinsip dalam pemeriksaan mata yaitu : pemeriksaaan mata bagian dalam, pengukuran daya focus mata, penmgukuran kelengkungan kornea. Peralatan dalam pemeriksaan mata dan lensa ada 6 macam yaitu :
 Opthalmoskop
v
 Retinoskop
v
 Keratometer
v
 Tonometer dari schiotz
v
 Pupilometer
v
 Lensometer
v

OPTHALMOSKOP
Alat ini mula-mula dipakai oleh Helmholtz (1851). Prinsip pemeriksaan dengan opthalmoskop untuk mengetahui keadaan fundus okuli ( = retina mata dan pembuluh darah khoroidea keseluruhannya). Ada dua prinsip kerja opthalmoskop yaitu :
 Pencerminan mata secara langsung
v
Fundus okuli penderita disinari dengan lampu, apabila mata penderita emetropia dan tidak melakukan akomodasi maka sebagian cahaya akan dipantulkan dan keluar dari lensa mata penderita dalam keadaan sejajar dan terkumpul menjadi gambar tajam pada selaput jaringan mata pemeriksa (dokter) yang juga tidak terakomodasi. Pada jaringan mata dokter terbentuk gambar terbalik dan sama besar dengan fundus penderita.
 Pencerminan mata secara tak langsung
v
Cahaya melalui lensa condenser diproyeksi ke dalam mata penderita dengan bantuan cermin datar kemudian melalui retina mata penderita dipantulkan keluar dan difokuskan pada mata sipemeriksa (dokter). Dengan mempergunakan opthalmoskop dapat mengamati permasalahan mata yang berkaitan dengan tumor otak.


RETINOSKOP
Alat ini dipakai untuk menentukan reset lensa demi koreksi mata penderita tanpa aktivitas penderita, meskipun demikian mata penderita perlu terbuka dan dalam posisi nyaman bagi si pemeriksa. Cahaya lampu diproyeksi ke dalam mata penderita dimana mata penderita tanpa akomodasi. Cahaya tersebut kemudian dipantulkan dari retina dan berfungsi sebagai sumber cahaya bagi sipemeriksa.
Fungsi retinoskop dianggap normal, apabila suatu objek (cahaya) berada di titik jauh mata akan difokuskan pada retina. Cahaya yang dipantulkan retina akan menghasilkan bayanagan focus pada titik jauh pula. Oleh karena itu pada waktu pemeriksa mengamati mata penderita melalui retionoskop ,lensa posistif atau negatif diletakkan di depan mata penderita sesuai dengan keperluan agar bayangan (cahaya) yang dibentuk oleg retina penderita difokuskan pada mata pemeriksa. Lensa posistif atau negatif yang dipakai itu perlu ditambah atau dikurangi agar pengfokusan bayangan dari retina penderita terhadap pemeriksa tepat adanya. Suatu contoh, jarak pemeriksa 67 cm lensa yang diperlukan 1, 5 D.

KERATOMETER
Alat ini untuk mengukur kelengkungan kornea. Pengukuran ini diperuntukkan pemakaian lensa kontak; lensa kontak ini dipakai langsung yaitu dengan cara menempel pada kornea yang mengalami gangguan kelengkungan. Ada dua lensa kontak yaitu :
a. Hard contact lens
Dibuat dari plastic yang keras, tebal 1 mm dengan diameter 1 cm. sangat efektif bila dilepaskan dan mudah terlepas oleh air mata tetapi dapat mengoreksi astigmatisma.

b. Soft contact lens
Adalah kebalikan dari hard contact lens. Sangat nyaman tetapi tidak dapat mengoreksi astigmatisma.

Dasar kerja keratometer :
Benda dengan ukuran tertentu diletakkan didepan cermin cembung dengan jarak diketahui akan membentuk bayangan di belakang cermin cembung berjarak ½ r. dengan demikian dapat ditentukan permukaan cermin cembung.
Berlandaskan kerja cermin cembung maka dibuat keratometer. Pada keratometer ,kornea bertindak sebagai cermin cembung, sumber cahaya sebagai objek. Pemeriksa mengatur focus agar memperoleh jarak dari kornea.
Pemeriksa menentukan ukuran bayangan yang direfleksi dengan mengatur sudut prisma agar menghasilkan dua bayangan. Posisi prisma setelah diatur akan dikaliberasi dengan daya focus kornea ( dalam dioptri). Nilai rata-rata 44 dioptri dengan rata-rata radius kelengkungan kornea 7,7 mm. penderita dengan astigmastisma , biasanya dalam pengukuran bayangan dibuat arah vertical dan horizontal.

TONOMETER
Pada tahun 1900, Schiotz (Jerman) memperkenalkan alat untuk mengukur tekanan intraocular yang dikenal dengan nama Tono meter dari Schiotz.
Tehnik dasar :
Penderita ditelentangkan dengan mata menatap ke atas, kemudian kornea mata dibius. Tengah-tengah alat ( Plug) diletakkan di atas kornea menyebabkan suatu tekanan ringan terhadap kornea. Plug dari tonometer berhubungan dengan skala sehingga dapat terbaca nilai skala tersebut. Tonometer dilengkapi dengan alat pemberat 5 5, 7 5 1 0, 0 dan 15,0 gram. Apabila pada pengukur tekanan intraocular dimana menggunakan alat pemberat 5, 5 gmaka berat total tonometer =
= Berat plug + alat pemberat
= 11 gram + 5,5 gram
= 16,5 gram.
16,5 gram ini menunjukkan tekanan intraokuler sebesar 17 mm Hg. Pemeriksaan tekanan di dalam bola mata (intraokuli) untuk mengetahui apakah penderita menderita glaucoma atau tidak. Pada penderita glaucoma tekanan intraokuli mencapai 80 mmHg. Dalam keadaan normal tekanan intraokuli berkisar antara 20 – 25 mmHg dengan rata-rata produksi dan pengeluaran cairan humor aqueous 5 ml/hari.
Tahun 1950 Tonometer Schiotz dimadifikasi dengan kemudahan dalam pembacaan secara elektronik dan dapat direkam di sebut tonograf. Goldmann (1955) mengembangkan tonometer yang disebut tono meter Goldmann Aplanation ; pengukuran dengan memakai alat ini penderita dalam posisi duduk.

PUPILOMETER DARI EINDHOVEN
Diameter pupil dapat diukur dengan menggunakan pupilometer dari eindhoven. Yaitu lempengan kertas terdiri dari sejumlah lubang kecil dengan jarak tertentu. Apabila melihat melalui lubang-lubang ini dengan latar belakang dan tanpa akomodasi maka diperoleh perjalanan sinar sebagai berikut :
Lingkaran yang terproyeksi pada jaringan retina saling menyentuh berarti garis 1 dan 2 adalah sejajar. Garis 1 dan 2 inilah garis terluar yang masih dapat masuk melalui pupil, sehingga deperoleh jarak d, jarak ini adalah diameter pupil. Pada penentuan besar pupil, jarak antara lubang dan mata tidak menjadi masalah.

LENSOMETER
Suatu alat yang dipakai untuk emngukur kekuatan lensa baik dipakai si penderita atau sekedar untuk mengetahui dioptri lensa tersebut. Prinsip dasar :
Menentukan focus lensa positif sangat mudah , dapat dengan cara :
 Memfokuskan bayangan dari suatu objek tak terhingga misalnya (matahari)
v
 Memfokuskan bayangan dari suatu objek yang telah diketahui jaraknya.
v

Tehnik di atas ini tidak dapat diterapkan pada lensa negatif namun dapat dilakukan sedikit modifikasi yaitu : mengkombinasikan lensa negatif dengan lensa positif kuat yang telah ditentukan dioptrinya, dengan demikian dapat ditulis rumus sebagai berikut :

Dengan memakai lensometer, benda penyinaran digerakkan sehingga diperoleh bayangan tajam melalui pengamatan lensa.


DAFTAR PUSTAKA
1. J.F. Gabriel,2003, Fisika Kedokteran, EGC, Jakarta
2. Ganong, W.F, 1999, Buku Ajar Fisiologi Kedokteran, Edisi 17, EGC, Jakarta.
sumber:
http://arwinlim.blogspot.com/2007/10/bio-optik-dalam-keperawatan.htmlhttp://www.previewshots.com/images/v1.2/t.gif

[FISIKA] Bahasan Bio-Optik
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgT_taSvBF3lYUdyTf5sE-rOdSpDemG_Y7PQkXFQqP8LjboNYQw7TbqTo4BNHXf8H0J8IkIlOmT47FdxGxIUIqk-ABM2st8_LJtzgnMNpxwD2a8lL0zTCqWbangFxvX__R74pUGg4zVTR39/s400/biooptik02.jpg

Pengertian Biooptik
Menilik kata biooptik, tersusun atas kata bio dan optik. Bio berkaitan dengan makhluk hidup/ zat hidup atau bagian tertentu dari makhluk hidup, sedangkan optik dikenal sebagai bagian ilmu fisika yang berkaitan dengan cahaya atau berkas sinar. secara spesifik ada klasifikasi Optik geometri dan optika fisis. Fokus utama di biooptik adalah terkait dengan indera penglihatan manusia, yaitu mata.


Mata menjadi alat optik yang paling penting pada manusia atau makhluk hidup. Bagaimana proses sebuah objek dapat dilihat dan dipersepsikan di otak? Apa saja bagian-bagian mata yang berperan? Mengapa seseorang bisa rabun, atau Mengapa respon mata terhadap perubahan intensitas cahaya di gelap atau terang berbeda? Apa itu rod dan kone? Apa saja jenis kelainan mata dan bagaimana cara mengoreksi atau memperbaikinya?

Optika Geometri dan Optika Fisik 

Optika Geometri
Berpangkal pada perjalanan cahaya dalam medium secara garis lurus, berkas-berkas cahaya di sebut garis cahaya dan gambar secara garis lurus. Dengan cara pendekatan ini dapatlah melukiskan ciri-ciri cermin dan lensa dalam bentuk matematika. Misalnya untuk rumus cermin dan lensa :
f = focus = titik api
b = jarak benda
v = jarak bayangan
Hukum Willebrord Snelius (1581 -1626) :
n = indeks bias
i = sudut datang
r = sudut bias (refraksi)

Optika Fisik
Gejala cahaya seperti dispersi, interferensi dan polasisasi tidak dapat di jelaskan malui metode optika geometri. Gejala-gejala ini hanya dapat dijelaskan dengan menghitung ciri-ciri fisik dari cahaya tersebut. Sir Isaac Newton (1642-1727), cahaya itu menggambarkan peristiwa cahaya sebagai sebuah aliran dari butir-butir kecil (teori korpuskuler). Sedangkan dengan menggunakan teori kwantum yang dipelopori Plank (1858-1947), cahaya itu terdiri atas kwanta atau foton-foton, tampaknya agak mirip dengan teori Newton yang lama itu. Dengan menggunakan teori Max Plank dapat menjelaskan mengapa benda itu panas apabila terkena sinar.

Thomas Young (1773-1829) dan August Fresnel (1788-1827), dapat menjelaskan bahwa cahaya dapat melentur berinterferensi. James Clark Mexwell (1831-1879) berkebangsaan Skotlandia, dari hasil percobaannya dapat menjelaskan bahwa cepat rambat cahaya (3 X 10 m/detik) sehingga berkesimpulan bahwa cahaya adalah gelombang elektromagnetik.

Huygens ( 1690) menganggap cahaya itu sebagai gejala gelombang dari sebuah sumber cahaya menjalarkan getaran-getaran ke semua jurusan. Setiap titik dari ruangan yang bergetar olehnya dapat dianggap sebagai sebuah pusat gelombang baru. Inilah prinsip dari Huygens yang belum bisa menjelaskan perjalanan cahaya dari satu medium ke medium lainnya. Dari hasil percobaan Einstein (1879-1955) dimana logam di sinari dengan cahaya akan memancarkan electron (gejala foto listrik). Hal ini dapat disimpulkan bahwa cahaya memiliki sifat fartikel dan gelombang magnetic.

Dari uraian di atas dapat disimpulkan bahwa cahaya mempunyai sifat materi (partikel) dan sifat gelombang.
Macam-macam Bentuk Lensa
Berdasarkan bentuk permukaannya, lensa dibagi menjadi dua, yaitu:

Lensa yang mempunyai permukaan sferis, dibagi menjadi dua macam pula, yaitu:

Lensa Cembung/ Konvergen/ Positif
Sebuah lensa positif atau lensa pengumpul adalah lensa yang bagian tengahnya lebih tebal dari bagian tepinya. Cahaya sejajar yang datang pada sebuah lensa positif difokuskan pada titik focus kedua yang berada pada sisi transmisi lensa tersebut.

Lensa Cekung/ Divergen/ Negatif
Sebuah lensa negative atau lensa menyebar adalah lensa yang bagian tepinya lebih tebal daripada bagian tengahnya. Cahaya sejajar yang datang pada sebuah lensa negative memancar seolah-olah dari titik focus kedua, yang berada pada sisi datang lensa.

Lensa yang mempunyai permukaan silindris
Adalah lensa yang mempunyai silinder, lensa ini mempunyai fokus yang positif dan ada pula yang mempunyai panjang fokus negatif.
           
Kekuatan Lensa (Dioptri)
Kekuatan lensa dinyatakan dengan satuan dioptri (m-1). Kekuatan lensa (P) sama dengan kebalikan panjang fokusnya (1/f). Jika panjang fokus dalam meter, kekuatan lensa adalah dalam dioptri (D):
                        P =  =  +  dioptri
P = Kekuatan lensa (dioptri)
F = fokus lensa (m)
s = jarak benda dari lensa (m)
s´ = jarak bayangan dari lensa (m)
1D = 1 m-1

Kesesatan Lensa
Berdasarkan persamaan yang berkaitan dengan jarak benda, jarak bayangan , jarak focus, radius kelengkungan lensa seerta sinar-sinar yang dating paraksial akan kemungkinan adanya kesesatan lensa (aberasi lensa). Aberasi ini ada bermacam-macam :
  1. Aberasi sferis ( disebabkan oleh kecembungan lensa).Sinar-sinar paraksial / sinar-sinar dari pinggir lensa membentuk bayangan di P’. aberasi ini dapat dihilangkan dengan mempergunakan diafragma yang diletakkan di depan lensa atau dengan lensa gabungan aplanatis yang terdiri dari dua lensa yang jenis kacanya berlainan.
  2. Koma,  Aberasi ini terjadi akibat tidak sanggupnya lensa membentuk bayangan dari sinar di tengah-tengah dan sinar tepi. Berbeda dengan aberasi sferis pada aberasi koma sebuah titik benda akan terbentuk bayangan seperti bintang berekor, gejala koma ini tidak dapat diperbaiki dengan diafragma.
  3. Astigmatisma, Merupakan suatu sesatan lensa yang disebabkan oleh titik benda membentuk sudut besar dengan sumbu sehingga bayangan yang terbentuk ada dua yaitu primer dan sekunder. Apabila sudut antara sumbu dengan titik benda relatif kecil maka kemungkinan besar akan berbentuk koma.
  4. Kelengkungan medan,  Bayangan yang dibentuk oleh lensa pada layer letaknya tidak dalam satu bidang datar melainkan pada bidang lengkung. Peristiwa ini disebut lengkungan medan atau lengkungan bidang bayangan.
  5. Distorsi,  Distorsi atau gejala terbentuknya bayangan palsu. Terjadinya bayangan palsu ini oleh karena di depan atau di belakang lensa diletakkan diafragma atau cela. Benda berbentuk kisi akan tampak bayangan berbentuk tong atau berbentuk bantal. Gejala distorsi ini dapat dihilangkan dengan memasang sebuah cela di antara dua buah lensa.
  6. Aberasi kromatis, Prinsip dasar terjadinya aberasi kromatis oleh karena focus lensa berbeda-beda untuk tiap-tiap warna. Akibatnya bayangan yang terbentuk akan tampak berbagai jarak dari lensa.
 Aberasi
Pemburaman bayangan dari sebuah obyek tunggal dikenal dengan istilah aberasi. Aberasi sferis merupakan hasil dari kenyataan bahwa permukaan melengkung hanya memfokuskan sinar-sinar paraksial (sinar-sinar yang berjalan dekat sumbu utama) pada sebuah titik tunggal. Sinar-sinar non paraksial pada titik dekat yang bergantung pada sudut yang dibuat dengan sumbu utamanya. Sinar-sinar yang mengenai lensa jauh dari sumbu utamadibelokkan lebihh dari sinar-sinar yang dekat dengan sumbu utama, dengan hasilnya bahwa tidak semua sinar difokuskan pada sebuah titik tunggal. Sebaliknya bayangan tersebut kelihatan sebagai sebuah cakram melingkar. Lingkaran dengan kekacauan paling sedikit berada pada titik, di mana garis tengahnya minimum.
 
Aberasi sferis dapat dikurangi dengan memperkecil ukuran permukaan melengkungnya, yang juga berarti memperkecil jumlah cahaya yang mencapai bayangannya. Aberasi seperti ini namun lebih rumit disebut coma (comet-shapet image) dan  astigmatisma yang terjadi saat obyek-obyek berada di luar sumbu utama. Aberasi dalam bentuk bayagan obyek yang memanjang yang disebabkan kenyataan bahwa perbesaran bergantung pada jarak titik obyek dari sumbu utama disebut distorsi.

Aberasi kromatik, yang terjadi pada lensa bukan pada cermin, adalah hasil dari variasi indeks bias dengan panjang gelombang.
Aberasi kromatik dan aberasi lainnya dapat diperbaiki sebagian dengan menggunakan kombinasi beberapa lensa sebagai ganti sebuah lensa tunggal. Sebagai contoh, sebuah lensa positif dan sebuah lensa negative dengan panjang fokus lebih besar dapat digunakan bersama-sama untuk menghasilkan sebuah sistem lensa pengumpul yang mempunyai aberasi kromatik jauh lebih sedikit dibandingkan sebuah lensa tunggal dengan panjang fokus yang sama. Lensa-lensa kamera yang bagus biasanya berisi elemen-elemen untuk memperbaiki berbagai aberasi yang muncul.

Instrumen Optik
Banyak instrumen yang digunakan saat ini sangat canggih. Prinsip kerjanya sering sangat sederhana, tetapi penggunaan imajinatif prinsip-prinsip ini telah melipatgandakan kemampuan kita untuk melihat dan memahami dunia yang melingkupi kita.

Mata
Mata merupakan alat optik yang paling dekat dengan kita dan merupakan sistem optik yang paling penting. Dengan mata, kita bisa melihat keindahan alam sekitar kita.

Bagian-bagian Mata
Mata memiliki bagian-bagian yang memiliki fungsi-fungsi tertentu sebagai alat optik, yaitu:
a)      Kornea, merupakan selaput kuat yang tembus cahaya dan berfungsi sebagai pelindung bagian dalam bola mata. Kornea memiliki inervasi saraf tetapi avaskuler (tidak memiliki suplai darah).
b)      Iris, merupakan selaput berbentuk lingkaran yang menyebabkan mata dapat membedakan warna.  Iris adalah diafragma yang melingkar dan berpigmen dengan lubang yang agak di tengah yakni pupil. Iris terletak sebagian dibagian depan lensa dan sebagian di depan badan siliaris. Iris terdiri dari serat otot polos. Fungsi iris yakni mengendalikan jumlah cahaya yang masuk.
c)      Pupil, merupakan celah lingkaran pada mata yang dibentuk oleh iris, berfungsi mengatur banyaknya cahaya yang masuk ke mata.
d)     Lensa mata, merupakan lensa cembung yang terbuat dari bahan bening, berserat dan kenyal, berfungsi mengatur pembiasan cahaya.
e)      Retina, merupakan lapisan yang berisi ujung-ujung saraf yang sangat peka terhadap cahaya. Retina berfungsi untuk menangkap bayangan yang dibentuk oleh lensa mata. Retina merupakan bagian saraf  pada mata, tersusun oleh sel saraf dan serat-seratnya. Retina berperan sebagai reseptor rangsang cahaya. Retina tersusun dari sel kerucut yang bertanggung jawab untuk penglihatan warna dan sel batang yang bertanggung jawab untuk penglihatan di tempat gelap.
f)       Aquaeuos humor, merupakan cairan mata.
g)      Saraf optic, merupakan saraf yang menyampaikan informasi tentang kuat cahaya dan warna ke otak.
Banyak pengetahuan yang kita peroleh melalui suatu penglihatan. Untuk membedakan gelap atau terang tergantung atas penglihatan seseorang.Ada tiga komponen pada penginderaan penglihatan :
*        Mata memfokuskan bayangan pada retina,
*        System syaraf mata yang memberi informasi ke otak,
*        Korteks penglihatan salah satu bagian yang menganalisa penglihatan tersebut.
b.         Pembentukan Bayangan Pada Mata
Mata bisa melihat benda jika cahaya yang dipantulkan benda sampai pada mata dengan cukup, kemudian lensa mata akan membentuk bayangan yang bersifat nyata, terbalik dan diperkecil pada retina. Ada tiga komponen penginderaan penglihatan, yaitu:
  1. Mata memfokuskan bayangan pada retina
  2. Sistem saraf mata yang member informasi ke otak
  3. Korteks penglihatan salah satu bagian yang menganalisa penglihatan tersebut
Cahaya memasuki mata melalui bukaan yang berubah, lapisan serat saraf yang menutupi permukaan belakangnya. Retina berisi struktur indra-cahaya yang sangat luas yang disebut batang (rod) dan kerucut (cone) yang menerima dan memancarkan informasi di sepanjang serat saraf optic ke otak. Bentuk lensa kristal dapat diubah sedikit oleh kerja otot siliari. Apabila mata difokuskan pada benda yang jauh, otot akan mengendur dan sistem lensa kornea berada pada panjang fokus maksimumnya, kira-kira 2 cm, jarak dari kornea ke retina. Apabila benda didekatkan, otot siliari akan meningkatkan kelengkungan lensa, yang dengan demikian akan mengurangi panjang fokusnya sehingga bayangan akan difokuskan ke retina. Proses ini disebut akomodasi.

c.         Ketajaman Penglihatan
Ketajaman penglihatan digunakan untuk menentukan penggunaan kacamata, di klinik dikenal dengan istilah visus. Sedangkan dalam fisika, ketajaman penglihatan ini disebut resolusi mata.
Visus penderita bukan saja member pengertian tentang optiknya (kacamata), tetapi mempunyai arti yang lebih luas yaitu memberi keterangan mengenai baik buruknya fungsi mata secara keseluruhan. Oleh karena itu definisi visus adalah: nilai kebalikan sudut (dalam menit) terkecil di mana sebuah benda masih dapat dilihat dan dapat dibedakan.

Pada penentuan visus, para ahli mata mempergunakan kartu Snellen, dengan berbagai ukuran huruf dan jarak yang sudah ditentukan. Misalnya mata normal pada waktu diperiksa diperoleh 20/40, berarti penderita dapat membaca huruf pada 20 ft, sedangkan bagi mata normal dapat membaca pada jarak 40 ft, (1 ft = 5 m). Dengan demikian dapat dirumuskan dengan persamaan:
V =
d :  jarak yang dapat dilihat oleh penderita
D : jarak yang dapat dilihat oleh mata normal

Penggunaan kartu Snellen ini kualitasnya kadang-kadang meragukan oleh karena huruf yang sama besarnya mempunyai derajat kesukaran yang berbeda, demikian pula huruf dengan ukuran berbeda kadang-kadang tidak sama bentuknya. Untuk menghindari kelemahan-kelemahan itu telah diciptakan kartu Cincin Landolt. Kartu ini mempunyai sejumlah cincin berlubang, diatur berderet yang sama besar, dengan lubang yang arahnya ke atas, ke bawah, ke kiri dan ke kanan. Dari atas ke bawah cincin itu diatur agar lubangnya mengecil secara berangsur-angsur. Penderita disuruh menunjukan deretan cincin tersebut hingga cincin terkecil tanpa salah. Angka visus ini dapat didapat dengan menghitung sudut di mana cincin Landolt itu diamati. Misalnya penderita menunjukan cincin Landolt tanpa salah 0,8 mm jarak 4 meter.

d.         Medan Penglihatan
Untuk mengetahui besar kecilnya medan penglihatan seseorang dipergunakan alat Perimeter. Dengan alat ini diperoleh medan penglihatan vertikal 130º, sedangkan medan penglihatan horizontal 155º.

e.         Tanggap Cahaya
Bagian mata yang tanggap cahaya adalah retina. Ada dua tipe fotoreseptor pada retina yaitu Rod (batang) dan Cone (kerucut). Rod dan Cone tidak terletak pada permukaan retina melainkan beberapa lapis di belakang jaringan saraf. Tiap mata memiliki 6,5 juta cone yang berfungsi untuk melihat siang hari, disebut penglihatan fotopik. Melalui cone kita dapat mengenal beberapa warna, tetapi hanya sensitive terhadap warna kuning, hijau (panjang gelombang 550 nm). Cone terdapat terutama pada fovea sentralis.
Rod dipergunakan pada waktu malam atau disebut penglihatan skotopik, dan merupakan ketajaman penglihatan dan dipergunakan untuk melihat ke samping. Setiap mata terdapat 120 juta rod. Distribusi pada retina tidak merata, pada sudut 20º terdapat kepadatan yang maksimal. Batang ini sangat peka terhadap cahaya biru dan hijau (510 nm).
Tetapi rod dan cone sama-sama peka terhadap cahaya merah (650-700 nm), tetapi penglihatan cone lebih baik terhadap cahaya merah jika dibandingkan dengan rod.

            f.          Penyesuaian Terhadap Terang dan Gelap
Dari ruang gelap masuk ke ruangan terang kurang mengalami kesulitan dalam penglihatan. Tetapi apabila dari ruangan terang masuk ke dalam ruangan gelap akan tampak kesulitan dalam penglihatan dan diperlukan waktu agar memperoleh penyesuaian.

Apabila kepekaan retina cukup besar, seluruh objek/benda akan merangsang rod secara maksimum sehingga setiap benda bahkan yang gelap pun akan terlihat terang putih. Tetapi apabila kepekaan retina sangat lemah, ketika masuk ke dalam ruangan gelap tidak ada bayangan yang benderang yang merangsang rod dengan akibat tidak ada suatu objek pun yang terlihat. Perubahan sensitivitas retina secara automatis ini dikenal sebagai fenomena penyesuaian terang dan gelap.

a)      Mekanisme Penyesuaian Terang (Cahaya)
Pada kerucut dan batang terjadi perubahan di bawah pengaruh energy sinar yang disebut foto kimia. Di bawah pengaruh foto kimia ini rhodopsin akan pecah, masuk ke dalam retina dan skotopsine. Retina akan tereduksi menjadi vitamin A di bawah pengaruh enzim alcohol dehydrogenase dan koenzym DPN-H + H+ (=DNA) dan terjadi proses timbale balik (visa verasa).

Rushton (1955) telah membuktikan adanya rhodopsin dalam retina mata manusia, ternyata konsentrasi rhodopsin sesuai dengan distribusi rod. Penyinaran dengan energi cahaya yang besar dan dilakukan secara terus menerus, konsentrasi rhodopsin di dalam rod akan sangat menurun sehingga kepekaan retina terhadap cahaya akan menurun.

b)     Mekanisme Penyesuaian Gelap
Seseorang masuk ke dalam ruangan gelap yang tadinya berada di ruangan terang, jumlah rhodopsin di dalam rod sangat sedikit sebagai akibat orang tersebut tidak dapat melihat objek/benda di ruang gelap. Selama berada di ruangan gelap, pembentukan rhodopsin di dalam rod sangatlah perlahan-lahan, konsentrasi rhodopsin akan mencapai kadar yang cukup dalam beberapa menit berikutnya sehingga akhirnya rod akan terangsang oleh cahaya dalam waktu singkat.

Selama penyesuaian gelap, kepekaan retina akan meningkat mencapai nilai 1.000 hanya dalam waktu beberapa menit saja.kepekaan retina mencapai 1.000, waktu yang diperlukan 1 jam. Sedangkan kepekaan retina akan menurun dari nilai 100.000 apabila seseorang dari ruangan gelap ke ruangan terang. Proses penurunan kepekaan retina hanya diperlukan waktu 1 sampai 10 menit. Penyesuaian gelap ini ternyata cone lebih cepat daripada rod. Dalam waktu kira-kira 5 menit fovea sentralis telah mencapai tingkat kepekaan. Kemudian dilanjutkan penyesuaian gelap oleh rod sekitar 30 sampai 60 menit, rata-rata terjadi pada 15 menit pertama.

g.        Tanggap Warna
Salah satu kemampuan mata adalah tanggap warna, namun mekanisme tanggap warna tersebut belum diketahui secara jelas. Tetapi dengan menggunakan pengamatan fotopik dapat melihat warna namun tidak dapat membedakan warna pada objek yang letaknya jauh dari pusat medan penglihatan.

a)      Teori Tanggap Warna
Cone berbeda dengan rod dalam beberapa hal, yaitu cone member jawaban yang selektif terhadap warna, kurang sensitif terhadap cahaya dan mempunyai hubungan dengan otak dalam kaitan ketajaman penglihatan dibandingkan dengan rod. Ahli faal Lamonov, Young Helmholtz berpendapat ada tiga tipe cone yang tanggap terhadap tiga warna pokok yaitu biru, hijau dan merah.
1)      Cone biru, mempunyai kemampuan tanggap gelombang frekuensi cahaya antara 400-500 millimikron. Berarti cone biru dapat menerima cahaya ungu, biru dan hijau.
2)      Cone hijau, berkemampuan menerima gelombang cahaya dengan frekuensi antara 450 dan 675 millimikron. Ini berarti cone hijau dapat mendeteksi warna biru, hijau, kuning, orange dan merah.
3)      Cone merah, dapat mendeteksi seluruh panjang gelombang cahaya tetapi respon terhadap cahaya orange kemerahan sangat kuat daripada warna-warna lainnya.

Ketiga warna pokok (biru, hijau dan merah) disebut trikhromatik.

b)     Buta Warna
Jika seseorang tidak mempunyai cone merah, ia masih dapat melihat warna hijau, kuning orange dan warna merah dengan menggunakan cone hijau, tetapi tidak dapat membedakan secara tepat antara masing-masing warna tersebut oleh karena tidak mempunyai cone merah untuk kontras/membandingkan dengan cone hijau. Demikian pula jika seseorang kekurangan cone hijau, ia masih dapat melihat seluruh warna, tetapi tidak dapat membedakan antara warna hijau, kuning, oranye dan merah. Hal ini disebabkan cone hijau yang sedikit tidak mampu mengkontraskan dengan cone merah. Jadi tidak adanya cone merah atau hijau akan timbul kesukaran atau ketidakmampuan untuk membedakan warna antara warna merah dan hijau, keadaan ini disebut buta warna merah-hijau. Kasus yang jarang sekali, tetapi bisa jadi seseorang kekurangan cone biru, maka orang tersebut sukar membedakan warna ungu, biru dan hijau. Tipe buta warna ini disebut kelemahan biru (blue weakness).

Pada suatu penelitian diperoleh 8% laki-laki buta warna, sedangkan 0,5% terdapat pada wanita dan dikatakan buta warna ini diturunkan oleh wanita. Ada pula orang buta terhadap warna merah disebut protanopia, buta terhadap warna hijau disebut deuteranopia dan buta warna terhadap warna biru disebut tritanopia.

h.         Daya Akomodasi
Dalam hal memfokuskan objek pada retina, lensa mata memegang peranan penting. Kornea mempunyai fungsi memfokuskan objek secara tepat, demikian pula bola mata yang berdiameter 20-23 mm. Kemampuan lensa mata untuk memfokuskan objek disebut daya akomodasi. Selama mata melihat jauh, tidak terjadi akomodasi. Makin dekat benda yang dilihat, semakin kuat mata/lensa berakomodasi. Daya akomodasi ini tergantung kepada umur. Usia semakin tua daya akomodasi semakin menurun, hal ini disebabkan kekenyalan/elastisitas lensa semakin berkurang.

Jika benda terlalu dekat ke mata, lensa mata tidak dapat memfokuskan cahaya pada retina dan bayangannya menjadi kabur. Titik terdekat di mana lensa mata memfokuskan suatu bayangan pada retina disebut titik dekat (punctum proksimum). Pada saat ini mata berakomodasi sekuat-kuatnya (berakomodasi maksimum). Jarak dari mata ke titik dekat ini sangat beragam pada tiap orang dan berubah dengan meningkatnya usia. Pada usia 10 tahun, titik dekat dapat sedekat 7 cm, sementara pada usia 60 tahun titik dekat ini telah menjauh ke 200 cm karena kehilangan keluwesan lensa akibat elastisitas lensa semakin berkurang, disebut mata presbyop atau mata tua dan bukan merupakan cacat mata. Nilai standar yang diambil untuk titik dekat ini adalah 25 cm, dan dianggap sebagai mata normal.

Jarak terjauh benda agar dapat dilihat dengan jelas, dikatakan benda terletak pada titik jauh (punctum remotum). Pada saat ini mata tidak berakomodasi.lepas akomodasi.

i.    Jenis-jenis Mata dan Teknik Koreksi
a)      Mata Normal
Sering disebut juga mata emetrop. Mata normal memiliki titik dekat 25 cm dan titik jauh tak terhingga. Apabila mata memiliki titik dekat tidak sama dnegan 25 cm dan titik jauh tidak sama dengan tak terhingga, maka dikatakan sebagai cacat mata. Hal ini mengakibatkan mata sulit melihat benda yang jauh maupun dekat karena bayangan tidak jatuh tepat pada retina.

b)     Rabun Jauh (Miopi)
Disebut juga mata terang dekat, memiliki titik dekat kurang dari 25 cm (< 25 cm) dan titik jauh pada jarak tertentu. Orang yang menderita miopi dapat melihat dengan jelas benda pada jarak 25 cm, tetapi tidak dapat melihat benda jauh dengan jelas. Hal ini terjadi karena lensa mata tidak dapat menjadi piph sebagaimana mestinya sehingga bayangan benda jatuh di depan retina, disebabkan karena mata dibiasakan melihat benda dengan jarak dekat atau kurang dari 25 cm. cacat mata ini dapat diatasi dengan memakai kacamata berlensa cekung (minus).

c)      Rabun Dekat (Hipermetropi)
Rabun dekat memiliki titik dekat lebih dari 25 cm (> 25 cm), dan titik jauhnya pada jarak tak terhingga. Penderita rabun dekat dapat melihat jelas benda-benda yang sangat jauh tetapi tidak dapat melihat benda-benda dekat dnegan jelas. Hal ini terjadi karena lensa mata tidak dapat menjadi cembung sebagaimana mestinya sehingga bayangan benda jatuh di belakang retina, disebabkan karena mata dibiasakan melihat benda yang jaraknya jauh. Cacat mata ini dapat diatasi dengan kacamata berlensa cembung (plus).

d)     Mata Tua (Presbiopi)
Jenis mata ini bukan termasuk cacat mata, disebabkan oleh daya akomodasi yang berkurang akibat bertambah usia. Letak titik dekat maupun titik jauh telah bergeser. Titik dekatnya lebih dari 25 cm dan titik jauhnya hanya pada jarak tertentu. Pada penderita presbiopi tidak dapat melihat benda jauh dengan jelas serta tidak dapat membaca pada jarak baca normal. Jenis mata ini dapat ditolong dengan kacamata berlensa rangkap (minus di atas dan plus di bawah) yang disebut kacamata bifocal.

e)      Astigmatisma
Cacat mata ini disebabkan oleh kornea mata yang tidak berbentuk sferis, tapi lebih melengkung pada satu sisi daripada sisi yang lain. Akibatnya sebuah titik akan difokuskan sebagai garis pendek. Penderita astagmatisma, dengan satu mata akan melihat garis dalam satu arah lebih jelas daripada kea rah yang berlawanan. Penderita astagmatisma dapat diatasi dnegan menggunakan kacamata berlensa silindris.

f)       Mata Campuran
Penderita yang matanya sekaligus mengalami prsesbiopi dan miopi, maka memiliki titik dekat yang letaknya terlalu jauh dan titik jauh terlalu kecil, dapat ditolong dengan kacamata berlensa rangkap atau bifocal (negatif di atas dan positif di bawah).

            j.          Peralatan Dalam Pemeriksaan Mata
Dari sekian banyak peralatan mata, hanya beberapa peralatan yang akan dibahas dalam kaitan pemeriksaan mata. Ada tiga prinsip dalam pemeriksaan mata yaitu : pemeriksaaan mata bagian dalam, pengukuran daya focus mata, pengukuran kelengkungan kornea. Peralatan dalam pemeriksaan mata dan lensa ada 6 macam yaitu :
  1. Opthalmoskop
  2. Retinoskop
  3. Keratometer
  4. Tonometer dari schiotz
  5. Pupilometer
  6.  Lensometer

1)      Opthalmoskop
Alat ini mula-mula dipakai oleh Helmholtz (1851). Prinsip pemeriksaan dengan opthalmoskop untuk mengetahui keadaan fundus okuli ( = retina mata dan pembuluh darah khoroidea keseluruhannya). Ada dua prinsip kerja opthalmoskop yaitu :
  1. Pencerminan mata secara langsung
Fundus okuli penderita disinari dengan lampu, apabila mata penderita emetropia dan tidak melakukan akomodasi maka sebagian cahaya akan dipantulkan dan keluar dari lensa mata penderita dalam keadaan sejajar dan terkumpul menjadi gambar tajam pada selaput jaringan mata pemeriksa (dokter) yang juga tidak terakomodasi. Pada jaringan mata dokter terbentuk gambar terbalik dan sama besar dengan fundus penderita.
  1. Pencerminan mata secara tak langsung
Cahaya melalui lensa condenser diproyeksi ke dalam mata penderita dengan bantuan cermin datar kemudian melalui retina mata penderita dipantulkan keluar dan difokuskan pada mata sipemeriksa (dokter). Dengan mempergunakan opthalmoskop dapat mengamati permasalahan mata yang berkaitan dengan tumor otak.
2)      Retinoskop
Alat ini dipakai untuk menentukan reset lensa demi koreksi mata penderita tanpa aktivitas penderita, meskipun demikian mata penderita perlu terbuka dan dalam posisi nyaman bagi si pemeriksa. Cahaya lampu diproyeksi ke dalam mata penderita dimana mata penderita tanpa akomodasi. Cahaya tersebut kemudian dipantulkan dari retina dan berfungsi sebagai sumber cahaya bagi sipemeriksa.
Fungsi retinoskop dianggap normal, apabila suatu objek (cahaya) berada di titik jauh mata akan difokuskan pada retina. Cahaya yang dipantulkan retina akan menghasilkan bayanagan focus pada titik jauh pula. Oleh karena itu pada waktu pemeriksa mengamati mata penderita melalui retionoskop ,lensa posistif atau negatif diletakkan di depan mata penderita sesuai dengan keperluan agar bayangan (cahaya) yang dibentuk oleg retina penderita difokuskan pada mata pemeriksa. Lensa posistif atau negatif yang dipakai itu perlu ditambah atau dikurangi agar pengfokusan bayangan dari retina penderita terhadap pemeriksa tepat adanya. Suatu contoh, jarak pemeriksa 67 cm lensa yang diperlukan 1, 5 D.

3)      Keratometer
Alat ini untuk mengukur kelengkungan kornea. Pengukuran ini diperuntukkan pemakaian lensa kontak; lensa kontak ini dipakai langsung yaitu dengan cara menempel pada kornea yang mengalami gangguan kelengkungan. Ada dua lensa kontak yaitu :
  1. Hard contact lens. Dibuat dari plastic yang keras, tebal 1 mm dengan diameter 1 cm. sangat efektif bila dilepaskan dan mudah terlepas oleh air mata tetapi dapat mengoreksi astigmatisma.
  2. Soft contact lens adalah kebalikan dari hard contact lens. Sangat nyaman tetapi tidak dapat mengoreksi astigmatisma.
Dasar kerja keratometer :
Benda dengan ukuran tertentu diletakkan didepan cermin cembung dengan jarak diketahui akan membentuk bayangan di belakang cermin cembung berjarak ½ r. dengan demikian dapat ditentukan permukaan cermin cembung.
Berlandaskan kerja cermin cembung maka dibuat keratometer. Pada keratometer ,kornea bertindak sebagai cermin cembung, sumber cahaya sebagai objek. Pemeriksa mengatur focus agar memperoleh jarak dari kornea.
Pemeriksa menentukan ukuran bayangan yang direfleksi dengan mengatur sudut prisma agar menghasilkan dua bayangan. Posisi prisma setelah diatur akan dikaliberasi dengan daya focus kornea ( dalam dioptri). Nilai rata-rata 44 dioptri dengan rata-rata radius kelengkungan kornea 7,7 mm. penderita dengan astigmastisma , biasanya dalam pengukuran bayangan dibuat arah vertical dan horizontal.
4)      Tonometer
Pada tahun 1900, Schiotz (Jerman) memperkenalkan alat untuk mengukur tekanan intraocular yang dikenal dengan nama Tono meter dari Schiotz.
Teknik dasar :
Penderita ditelentangkan dengan mata menatap ke atas, kemudian kornea mata dibius. Tengah-tengah alat ( Plug) diletakkan di atas kornea menyebabkan suatu tekanan ringan terhadap kornea. Plug dari tonometer berhubungan dengan skala sehingga dapat terbaca nilai skala tersebut. Tonometer dilengkapi dengan alat pemberat 5 5, 7 5 1 0, 0 dan 15,0 gram. Apabila pada pengukur tekanan intraocular dimana menggunakan alat pemberat 5, 5 g maka berat total tonometer:
= Berat plug + alat pemberat
= 11 gram + 5,5 gram
= 16,5 gram.

16,5 gram ini menunjukkan tekanan intraokuler sebesar 17 mm Hg. Pemeriksaan tekanan di dalam bola mata (intraokuli) untuk mengetahui apakah penderita menderita glaucoma atau tidak. Pada penderita glaucoma tekanan intraokuli mencapai 80 mmHg. Dalam keadaan normal tekanan intraokuli berkisar antara 20 – 25 mmHg dengan rata-rata produksi dan pengeluaran cairan humor aqueous 5 ml/hari.
Tahun 1950 Tonometer Schiotz dimadifikasi dengan kemudahan dalam pembacaan secara elektronik dan dapat direkam di sebut tonograf. Goldmann (1955) mengembangkan tonometer yang disebut tono meter Goldmann Aplanation ; pengukuran dengan memakai alat ini penderita dalam posisi duduk.

5)      Pupilometer Dari Eindhoven
Diameter pupil dapat diukur dengan menggunakan pupilometer dari eindhoven. Yaitu lempengan kertas terdiri dari sejumlah lubang kecil dengan jarak tertentu. Apabila melihat melalui lubang-lubang ini dengan latar belakang dan tanpa akomodasi maka diperoleh perjalanan sinar sebagai berikut :

-          Lingkaran yang terproyeksi pada jaringan retina saling menyentuh berarti garis 1 dan 2 adalah sejajar. Garis 1 dan 2 inilah garis terluar yang masih dapat masuk melalui pupil, sehingga deperoleh jarak d, jarak ini adalah diameter pupil. Pada penentuan besar pupil, jarak antara lubang dan mata tidak menjadi masalah.

6)      Lensometer
Suatu alat yang dipakai untuk emngukur kekuatan lensa baik dipakai si penderita atau sekedar untuk mengetahui dioptri lensa tersebut. Prinsip dasar : Menentukan focus lensa positif sangat mudah , dapat dengan cara :
-           Memfokuskan bayangan dari suatu objek tak terhingga misalnya (matahari)
-           Memfokuskan bayangan dari suatu objek yang telah diketahui jaraknya.
Teknik di atas ini tidak dapat diterapkan pada lensa negatif namun dapat dilakukan sedikit modifikasi yaitu : mengkombinasikan lensa negatif dengan lensa positif kuat yang telah ditentukan dioptrinya, dengan demikian dapat ditulis rumus sebagai berikut :
Dengan memakai lensometer, benda penyinaran digerakkan sehingga diperoleh bayangan tajam melalui pengamatan lensa.
   
REFERENSI:
Hani, Ahmadi Ruslan, S.Pd, dan Riwidikdo, Handoko, S.Kp. 2008. Fisika Kesehatan. Jogjakarta:  Mitra Cebdikia Press.
J.F. Gabriel,2003, Fisika Kedokteran, EGC, Jakarta
Diposkan oleh :
Abdul Rohman Sayyid